- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Janotti, Anderson (3)
-
Acuna, Wilder (2)
-
Bryant, Garnett (2)
-
Bryant, Garnett W. (2)
-
Ho, Dai Q. (2)
-
Hu, Ruiqi (2)
-
Law, Stephanie (2)
-
Liu, Yongchen (2)
-
Wang, Zhengtianye (2)
-
Zide, Joshua M. (2)
-
Bajracharya, Prabesh (1)
-
Budhani, Ramesh C. (1)
-
Davydov, Albert V. (1)
-
Doty, Matthew F. (1)
-
Fei, Fan (1)
-
Gundlach, Lars (1)
-
Johnson, Anthony (1)
-
Jungfleisch, M. Benjamin (1)
-
Kashid, Ranjit (1)
-
Khatami, Ehsan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Hubbard model is an essential tool for understanding many-body physics in condensed matter systems. Artificial lattices of dopants in silicon are a promising method for the analog quantum simulation of extended Fermi-Hubbard Hamiltonians in the strong interaction regime. However, complex atom-based device fabrication requirements have meant emulating a tunable two-dimensional Fermi-Hubbard Hamiltonian in silicon has not been achieved. Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite disorder and demonstrate tuning of the electron ensemble using gates and probe the many-body states using quantum transport measurements. By controlling the lattice constants, we tune the hopping amplitude and long-range interactions and observe the finite-size analogue of a transition from metallic to Mott insulating behavior. We simulate thermally activated hopping and Hubbard band formation using increased temperatures. As atomically precise fabrication continues to improve, these results enable a new class of engineered artificial lattices to simulate interactive fermionic models.more » « less
-
Liu, Yongchen; Acuna, Wilder; Zhang, Huairuo; Ho, Dai Q.; Hu, Ruiqi; Wang, Zhengtianye; Janotti, Anderson; Bryant, Garnett; Davydov, Albert V.; Zide, Joshua M.; et al (, ACS Applied Materials & Interfaces)
-
To, D. Quang; Wang, Zhengtianye; Ho, Dai Q.; Hu, Ruiqi; Acuna, Wilder; Liu, Yongchen; Bryant, Garnett W.; Janotti, Anderson; Zide, Joshua M.; Law, Stephanie; et al (, Physical Review Materials)
-
Sharma, Vinay; Wu, Weipeng; Bajracharya, Prabesh; To, Duy Quang; Johnson, Anthony; Janotti, Anderson; Bryant, Garnett W.; Gundlach, Lars; Jungfleisch, M. Benjamin; Budhani, Ramesh C. (, Physical Review Materials)
An official website of the United States government
